​启闳半导体科技(江苏)有限公司QiHong Semicon TECHNOLOGY (JIANGSU) CO.,LTD

电子邮箱  
密码      忘记密码?
  注册
EUV光刻,最终胜出!
来源:半导体行业观察 | 作者:李晨光 | 发布时间: 2022-08-26 | 1107 次浏览 | 分享到:


到了1984年,尼康已经和GCA平起平坐,各享三成市占率。Ultratech占约一成,Eaton、P&E、佳能、日立等剩下几家每家都不到5%。


同年,飞利浦与ASM合资创建的ASML成立,受不到重视的ASML被迫在飞利浦大厦外面的木板简易房里工作。


在竞争与演进中,时间来到八十年代中期,半导体市场陷入大滑坡。导致一帮光刻机厂商都碰到严重的财务问题,其中,入不敷出的ASM卖身自保,同时从ASML撤资;同样受到影响的还有GCA和Prekin-Elmer,由于新产品开发停滞不前,这两家曾经的巨头先后于1988年和1990年被General Signal和SVG收购。


而彼时ASML还规模尚小,所遭损失不大,还可以按既有计划开发新产品,得以在乱世中伛偻前行。而1980年还占据大半壁江山的美国三雄,到80年代末地位完全被日本双雄取代。这时ASML还只有大约10%的市场占有率。


光刻技术的岔路口


从另一个角度来看,光刻市场的变化也对应着光刻技术的变迁。


长期以来,摩尔定律被集成电路产业奉为圭臬。为了延续摩尔定律,光刻技术就需要每两年把曝光关键尺寸(CD)降低30%-50%。这就引出一个公式:CD=K1*λ/NA。从公式可以看出,曝光关键尺寸与波长、数值孔径以及制程因子三个参数有关。根据诉求,降低曝光关键尺寸,只需降低波长λ、增大数值孔径NA或降低制程因子K1。


其中,缩短波长是较为直接的手段。20世纪60年代到80年代中期的接触式光刻机、接近式光刻机和投影式光刻机主要采用汞灯光源,其光谱线分别为g线(436nm)、h线(405nm)和i线(365nm)。


随着技术演进,后续陆续开始使用248nm的KrF激光,进入1990年代,干式微影技术已经难以维系摩尔定律的演进,最终停滞在193nm波长的DUV光刻技术上,这就是著名的ArF准分子激光。


光刻机的光源波长被卡死在193nm,成为了摆在全产业面前的一道难关,也导致芯片制程在65/45nm技术节点上遇到了困难。


上世纪90年代后半期,大家都在寻找取代193nm光刻光源的技术,为了把193nm的光波“磨”细,大半个半导体业界都参与了进来,分成两队人马跃跃欲试:


尼康、佳能等公司主张用在前代技术的基础上,采用157nm波长光源,走稳健道路;新生的EUV LLC联盟则押注更激进的极紫外技术(EUV),用仅有十几纳米的极紫外光,刻10纳米以下的芯片制程。


但技术都已经发展到了这地步,不管哪一种方法做起来都不容易。