浪涌电流(Surge Current) 能力,同时具有较高的反 向恢复速度,是一个典型的快恢复二极管。

此外,如图 2-62 所示,将 PiN二极管和肖特基二极管组成复合并联结构(Merged PiN and Schottky, MPS) 则可提高肖特基二极管的耐压特性,降低正向压降。MPS 二极管是结合 PiN 功率二极管和肖特基二极管优点的快恢复二极管。

在低电流密度下,PiN 二极管并不导通,但在提高电流密度时,p区会向n⁻漂移区注入大量的空穴而产生电导调制效应,致使正向电压下降而让大电流能流过金属-半导体接触处。MPS 二极管的导通机制随着外加正向电压的逐渐增加,就由初始的肖特基结主导的单极工作状态转成由 pn 结主导的双极工作状态。当MPS二极管反向偏置时,pn 结空间电荷区扩展连成一片而屏蔽了肖特基结,使得肖特基结不再承受外加的反向偏置电压,而由反偏pn结的势垒承受外加的反偏电压来提高 MPS 二极管的击穿电压。MPS 二极管具有耐压及快恢复的特性,也是一种标准的快恢复二极管。
FRD 的主要应用是与开关器件(例如 GTO 晶闸管、IGCT、IGBT 等)结合,实现直流信号和交流信号的转换。以IGBT 为例,IGBT 能提高电力的利用效率,而 FRD 作为 IGBT 反偏工作状态下的辅助配合器件,可增加系统的稳定性与可靠性。